Міністерство освіти і науки України Донбаська державна машинобудівна академія

«Комп'ютерні дизайн та моделювання процесів і машин» методичні вказівкидля всіх видів робіт з дисципліни «КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ І ПРОЕКТУВАННЯ ПРОЦЕСІВ І МАШИН» /Частина 4Simulation/

(Для студентів усіх форм навчання спеціальності 131 «Прикладна механіка» Спеціалізації: Комп'ютерне моделювання та проектування процесів і машин)

Краматорськ 2019

Міністерство освіти і науки України Донбаська державна машинобудівна академія

«Комп'ютерні дизайн та моделювання процесів і машин» методичні вказівки для всіх видів робіт з дисципліни «КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ І ПРОЕКТУВАННЯ ПРОЦЕСІВ І МАШИН» /Частина 4Simulation/

(для студентів усіх форм навчання спеціальності 131 «Прикладна механіка» Спеціалізації: Комп'ютерне моделювання та проектування процесів і машин)

Затверджено на засіданні методичної ради спеціальності КДМПМ Протокол № от серпня 2019р.

Краматорськ 2019

УДК 621.73.043

«Комп'ютерні дизайн та моделювання процесів і машин»методичні вказівки для всіх видів робіт з дисципліни «Комп'ютерне моделювання і проектування процесів і машин»/Частина 4Simulation/ (для студентів усіх форм навчання спеціальності 131 «Прикладна механіка» Спеціалізації: Комп'ютерне моделювання та проектування процесів і машин) / Уклад.: Є.А. Єрьомкін, П.А. Бочанов. – Краматорськ: ДДМА, 2018. – 44 с.

Методики, викладені в даній розробці, сприятимуть підвищенню якості виконуваних курсових і дипломних проектів, дозволить сформувати у студентів цілісну систему знань, умінь і навичок інженерного проектування.

Укладачі:

Є.А. Єрьомкін, доц. каф.КДіМПМ;П.А. Бочанов, ст. викл. каф.КДіМПМ.

Відп. за випуск

О.Є. Марков, проф.

3MICT

Вступ	5
1. Практична робота №1 Розрахунки на міцність робочого циліндра	
преса за допомогою програми SolidWorks	11
1.1 Загальні відомості	11
1.2 Моделювання циліндра гідравлічного преса в середовищі	
SolidWorksSimulation	11
2. Практична робота №2 Розрахунки на міцність елементів	
кривошипного преса за допомогою програми SolidWorks	16
2.1 Загальна інформація	16
2.2 Послідовність проектування	18
3. Практична робота №3 Аналіз характеристик міцності елементів	
машинобудівних конструкційза допомогою прикладної бібліотекою	
АРМ FEM для KOMПAC-3D	21
3.1 Початок роботи з АРМ FEM	21
3.2 Інтерфейс системи АРМ FEM	22
3.3 Вибір об'єктів	23
3.4 Підготовка моделі до розрахунку	24
3.5 Виконання розрахунку	26
Список літератури	28
Додаток А - Автоматично сформований звіт про результати	
моделювання циліндра гідравлічного преса в середовищі	
SolidWorksSimulation	29

ВСТУП

SolidWorksSimulation - додаток до SolidWorks, призначене для вирішення завдань механіки деформованого твердого тіла методом кінцевих елементів. Це програмне забезпечення для вирішення завдань розрахунку на статичну міцність і стійкість в лінійної і нелінійної постановці, виділення власних частот, оптимізації форми деталей і зборок в лінійній постановці, аналізу втоми і поведінки конструкції при падінні.

використовує геометричну модель деталі збірки Програма або SolidWorksдля формування розрахункової моделі. Інтеграція 3 SolidWorksдает можливість мінімізувати операції, пов'язані зі специфічними особливостями кінцево-елементної апроксимації. Назначение граничных условий производится в привязке к геометрической модели, такими же особенностями обладают и процедуры представления результатов.

SolidWorksSimulationпостроен на базе метода конечных элементов. Отметим рад особенностей его реализации в данной программе.

1. В SolidWorksSimulationиспользуются три базовых типа конечных элементов: объемные изопараметрические тетраэдры, треугольные элементы оболочек и элементы балок. Два первых типа конечных элементов могут иметь линейное или параболическое поле перемещений (постоянную деформацию или линейное поле деформаций). Тетраэдры содержат, соответственно, 4 или 10 узлов, оболочки 3 или 6 а балки/стержни – 2.

2. Программа допускает сосуществование в одной модели твердотельных и оболочечных конечных элементов, причем гибридные сетки работоспособны как в линейных, так и в нелинейных расчетных моделях. Однако, элементы балок/стержней не сочетаются с какими-либо другими типами конечных элементов.

3. Контактные конечные элементы, по крайней мере, в явном виде, в про-грамме отсутствуют. На основе косвенных наблюдений можно

утверждать, что учет соответствующих граничных условий осуществляется изменением глобальной матрицы жесткости системы. Виртуальные объекты типа болтов, стержней/шпилек, пружин реализованы, как следует из материалов фирмы-разработчика, на базе элементов балок/стержней.

4. Деякі інші типи кінематичних граничних умов реалізуються безпосереднім зміною матриці жорсткості системи (в ранніх версіях програми для цього використовувалися штрафні функції - фактично «дуже» жорсткі допоміжні елементи, що призводило до помилок програми).

5. В межах однієї збірки допускається співіснування довільних комбінацій контактних граничних умов типу входу в контакт і виходу з контакту.

6. Для розрахунку збірок / багатотільних деталей в програмі реалізовані граничні умови, об'єднані в групу «З'єднання» (Connectors). Реалізація цих умов (або деяких їх різновидів) передбачає такі зміни матриці жорсткості системи (для деяких з них нам невідомо, здійснюються вони через безпосередню її модифікацію або ж за допомогою введення допоміжних «жорстких» кінцевих елементів), які фактично призводять до появи в моделі абсолютно жорсткого віртуального об'єкта. Як наслідок, в місці, де цей об'єкт взаємодіє з «реальними» деталями збірки (фактично, в зоні програми описаних граничних умов), можлива поява теоретично нескінченних деформацій (напружень). На практиці це виражається в відсутності збіжності рішення при ущільненні сітки і, швидше за все, некоректних результатів.

7. У SolidWorksSimulation присутній р-адаптивний метод побудови сітки кінцевих елементів. Це означає, що в зонах з високим градієнтом енергії деформації програма збільшує порядок полінома, що апроксимує поле переміщень в кінцевому елементі. При некоректній постановці кінематичних граничних умов можлива поява особливостей (теоретично нескінченних деформацій і напружень). Застосування даної опції для таких розрахункових моделей призводить до абсурдних результатів.

8. У SolidWorksSimulation присутній h-адаптивний метод побудови сітки кінцевих елементів. Він полягає в ущільненні сітки в зонах, де величина щільності енергії деформації відносно велика в порівнянні із середнім її значенням.

9. У рамках пружного аналізу можливе використання ортотропних матеріалів. Доступні ортогонально-ортотропні і, як приватний їх випадок (він не виділяється окремо), трансверсально-ізотропні матеріали. Можливе призначення циліндричної ортотропії. Криволінійна ортотропія відсутня. Ці властивості можна призначати як для твердих тіл, так і для оболонок. 10. При оцінці міцності збірок 3a допомогою функції SolidWorksSimulation міцності (DesignCheckWizard) всіх матеріалів «Перевірка для використовується один і той же тип критерію міцності. Таким чином, застосування цієї функції для аналізу збірок, що містять деталі з крихких і в'язких матеріалів, проблематично, якщо потрібно відобразити результати відразу для всіх деталей.

SolidWorksSimulation дозволяє виконувати наступні види моделювання:

- статичний аналіз в пружною постановці з розрахунком окремих деталей по просторової або оболонковій моделі, а також збірок в тривимірній постановці з урахуванням взаємодії деталей;

- розрахунок власних частот і відповідних їм форм для деталей твердотільному або оболонковому поданні, а також збірок з нерухомими деталями;

- розрахунок величин критичних навантажень втрати стійкості і відповідних їм форм для деталей в твердотільному або оболонковому поданні, а також збірок з нерухомими деталями;

 тепловой расчет с учетом явлений теплопроводности, конвекции, излучения, но без учета движения сред;

- аналіз термопружності на базі результатів теплового розрахунку;

- параметрична оптимізація за критерієм мінімізації / максимізації маси, об'єму, власних частот і критичної сили;

- імітація деформування конструкції з урахуванням фізичної і геометричної нелінійності, а також з огляду на зміни навантажень і температури в часі;

 моделювання ефекту падіння конструкції на жорстку або пружну поверхню;

- втомний розрахунок з урахуванням кривих втоми, форми кривої навантаження, а також лінійної гіпотези підсумовування пошкоджень.

Всі ці типи аналізу можуть бути пов'язані з одним і тим же об'єктом SolidWorks.

SolidWorksSimulation вимагає дотримання базової канви алгоритму методу скінченних елементів, надаючи всередині кожного етапу певну свободу в послідовності кроків підготовки моделі та розгляду результатів. Для розрахунку в пружною постановці для моделей в твердотільному поданні передбачувана ланцюжок подій описана нижче.

1. Створення аналізу певного типу і визначення його параметрів. Останні можуть бути змінені в будь-який момент перед виконанням розрахунку.

2. Заповнення, якщо необхідно, таблиці параметрів, що визначає набір величин, які можуть змінюватися (конкретно - для яких можуть призначатися списки значень) в ході розрахунку.

3. Підготовка вихідних даних всередині заданого аналізу:

- призначення матеріалу деталі або деталей;

- призначення кінематичних граничних умов;

- призначення статичних граничних умов;

- призначення контактних граничних умов, якщо розраховується збірка або деталь з декількох тіл;

- створення сітки.

4. Зв'язування, в разі необхідності, параметрів з таблиці параметрів з відповідними аналізами.

5. Виконання розрахунку.

6. Обробка результатів:

- створення необхідних діаграм;

- аналіз діаграм;

- експорт результатів.

Процедура оптимізації базується на результатах розрахунків в лінійній постановці (статичного аналізу, розрахунку на власні частоти та на стійкість). Втомний аналіз вимагає також виконання як мінімум одного статичного розрахунку.

Крім роботи в SolidWorksSimulation практичні роботи припускають моделювання і в інших подібних середовищах. Однією з таких середовищ є Система АРМ FEM для КОМПАС.

Система APM FEM є інтегрований в КОМПАС-3D інструмент для підготовки і подальшого кінцево-елементного аналізу тривимірної твердотільної моделі (деталі або збірки).

Підготовка геометричної 3D-моделі і завдання матеріалу здійснюється засобами системи КОМПАС-3D. За допомогою APM FEM можна прикласти навантаження різних типів, вказати граничні умови, створити кінцевоелементну сітку і виконати розрахунок. При цьому процедура генерації кінцевих елементів проводиться автоматично.

АРМ FEM дозволяє провести наступні види розрахунків:

• статичний розрахунок;

• розрахунок на стійкість;

• розрахунок власних частот і форм коливань;

• тепловий розрахунок.

В результаті виконаних системою APM FEM розрахунків Ви можете отримати наступну інформацію:

• карту розподілу навантажень, напруг, деформацій в конструкції;

- коефіцієнт запасу стійкості конструкції;
- частоти і форми власних коливань конструкції;
- карту розподілу температур в конструкції;
- масу і момент інерції моделі, координати центру ваги.

Система АРМ FEM розроблена в НТЦ АПМ (www.apm.ru) для прочностного кінцево-елементного експрес-аналізу в КОМПАС-3D. Більш розширений функціонал кінцево-елементного аналізу імпортованих моделей доступний в системі APM WinMachine в модулях APM Studio і APM Structure3D.

APM Studio дозволяє виконувати розрахунок не тільки твердотільних, але і оболонкових (пластинчастих) деталей і зборок.

АРМ Structure3D надає можливість редагування КЕ-сітки, створення комбінованих (стрижневих-пластинчастих-об'ємних) моделей, а також розв'язання задач великої розмірності.

Проектування сучасних виробів приладобудування важко уявити без участі САПР, що реалізують 3D-моделювання створюваних об'єктів. В рамках передових концепцій підтримки життєвого циклу виробу 3Dмоделювання залишається центральною складовою всього процесу роботи з виробом, за допомогою якої інженер-конструкторстворює 3D-моделі деталей і складальних одиниць, а також комплект конструкторської документації. В умовах активноговпровадження в конструкторську практику сучасних САПР, переходу підприємств на електронний документообіг,появи державного стандарту на електронну модель вироби стає очевидною важливість підготовки молодих фахівців в області САПР в навчальних закладах вищої освіти. Вирішенню цього завдання присвячено дана методрозробка, й націлена на отримання студентом необхідних теоретичних відомостей і практичних навичок 3D-проектування з розглядом задач, характерних для підприємств машинобудівної галузі

1. ПРАКТИЧНА РОБОТА №1 РОЗРАХУНКИ НА МІЦНІСТЬ РОБОЧОГО ЦИЛІНДРА ПРЕСА ЗА ДОПОМОГОЮ ПРОГРАМИ SOLIDWORKS

1.1 Загальні відомості

Робочий циліндр гідравлічного преса (рис. 1.1) складається з корпуса 1, плунжера 2, що направляє втулки 3, вузла ущільнення плунжера 4 і фланцеве приєднання до циліндра труби, що підводить (не показане). Корпус циліндра кріпиться у верхній поперечці 5 преса, плунжер опирається на рухливу поперечку (не показане). При подачі рідини високого тиску в циліндр плунжер рухається вниз, впливаючи через рухливу поперечку на кування. Корпус циліндра втримується від зсуву нагору за допомогою бурту 6, яким він опирається на виточення у верхній нерухомій поперечці. При цьому бурт сприймає повне номінальне зусилля циліндра.

1.2 Моделювання циліндра гідравлічного преса в середовищі SolidWorksSimulation

Необхідно елементами SolidWorksn прокреслити контури поперечного перерізу деталі і осі в закладці «Ескіз» (рис. 1.2).

У закладці «Елементи» вибрати той елемент, який необхідний для побудови 3-D моделі циліндра і, слідуючи інструкціям в командному рядку, отримати об'ємне зображення.

В даному випадку обраний «Елемент Повернена бобишка / підстави» обрана поверхня обертання і вісь. В результаті побудови отримана фігура циліндр (рис. 1.3).

Для початку аналізу необхідно увійти в меню «Аналіз» і викликати на панелі інструментів Помічника виконання аналізуSimulationXpress.

1 - корпус циліндра; 2 - плунжер; 3 - напрямна втулка; 4 - вузол ущільнення плунжера; 5 - нерухома поперечка; 6 - бурт циліндра;

7 - отвір для підведення рідини

Рисунок 1.1 - Робочий циліндр преса

Далі в меню яке з'явилося з правої сторони стежити за вказівками

помічника і слідувати його підказкам. Вибрати одиниці виміру, закріпити нерухомі області, докласти зусилля, тиск і т.д. (рис. 1.4). При цьому не забувати вказувати величини прикладених до деталі навантажень. Так само необхідно звернути увагу на вибір матеріалу (рис. 1.5).

Рисунок 1.2 – Половина контуру циліндра по осі

Рисунок 1.3 – Об'ємна фігура циліндра

Після остаточного вибору і редагування віх параметрів запустіть процес моделювання (рис.1.6) і подивіться отримані результати (рис. 1.7).

Рисунок 1.4 – Вибір навантаження на внутрішню стінку циліндра

Рисунок 1.5 – Вибір матеріалу циліндра і редагування властивостей матеріалу

СПИСОК ЛІТЕРАТУРИ

1. Кузнечно-штамповочное оборудование: учебник для машиностроительныхвузов\под ред. А.Н. Банкетова – М.: Машиностроение, 1982, 556с.

2. SolidWorks 2009 на примерах. Н.Ю. Дударева, С.А. Загайко: БХВ-Петербург,2009, 544 с.

3.Прерис А.М. SolidWorks 2005/2006. Учебный курс. / А.М. Прерис. – СПб.: Питер, 2006. – 528 с.: ил.

4. Прохоренко В.П. SolidWorks. Практическое руководство. / В.П. Прохоренко. – М.: ООО «Бином-Пресс», 2004. – 448с.: ил.

5. Тику Ш. Эффективная работа: SolidWorks 2004. / Ш. Тику. – Спб.: Питер, 2005. – 768 с.: ил.

6. Чугунов М.В. САЕ-системы предварительного анализа объектов машиностроения. Часть 1. Линейная статика. / М.В. Чугунов – Рузаевка: Рузаевский печатник, 2003. – 44 с.

7.Алямовский А.А. Инженерные расчеты в SolidWorksSimulation. М.: ДМК Пресс, 2010. 464 с., ил.

8.Алямовский А.А. SolidWorks 2007/2008. Компьютерное моделирование в инженерной практике / А.А. Алямовский, А.А. Собачкин, Е.В. Одинцов, А.И. Харитонович, Н.Б. Понамарев. – СПб.: БХВ-Петербург, 2008. –1040 с.: ил.

9.АлямовскийА.А. SolidWorks/CosmosWorks. Инженерный анализ методом конечных элементов / А.А. Алямовский. – М.: ДМК Пресс, 2004. – 432 с.

ПРИЛОЖЕНИЕ А – Автоматично сформований звіт про результати моделювання циліндра гідравлічного преса в середовищі SolidWorksSimulation

Допущения

Описание

Данные отсутствуют

Информация о модели

Твердыетела			
Имя и ссылки	Рассматривается как	Объемные свойства	Путь
документа			документа/Дата
			изменения
Повернуть-	Твердое тело	Macca:13.7072 kg	
Тонкостенный		Объем:0.00178016 m^3	
		Плотность:7700 kg/m^3	
		Macca:134.331 N	
Свойстваматериала			
Ссылка на модель	Свой	і́ства	Компоненты
	Имя	: Легированнаясталь	Твердое тело
	Типмодели	: ЛинейныйУпругийИзот	1(Повернуть-
		ропный	Тонкостенный10)(Д
	Критерийпрочностипоумо	о Максимальноенапряже	еталь1)
	лчанию	: ние von Mises	
	Пределтекучести	: 620.422 N/mm^2	
	Пределпрочностиприраст	n 723.826 N/mm^2	
	жении	:	

Нагрузки и крепления

Имя крепления	Изображение крепления	Данные крепления	
Зафиксированн ый-1		Объекты: Тип:	1 грани Зафиксированнаягео метрия

Имянагрузки	Загрузитьизображение	Загрузитьд	анные
Давление-1		Объекты: Тип: Значение: Единицыизмерения:	1 грани Перпендикулярновыб раннойграни 320 N/m^2

Информация о сетке – Детализация

Всего узлов	15681	
Всего элементов	7899	
Максимальное соотношение сторон	9.8549	
% элементов с соотношением сторон < 3	94.9	
% элементов с соотношением сторон > 10	0	
% искаженных элементов (Якобиан)	0	
Время для завершения сетки (hh;mm;ss):	00:00:03	
Имякомпьютера:	KONSTRUKTOR	
Тип сетки	Сетка на твердом теле	
Используемое разбиение:	Стандартная сетка	
Автоматическое уплотнение сетки:	Выкл	
Включить автоциклы сетки:	Выкл	
Точки Якобиана	4 Точки	
Размер элемента	12.1221 mm	
Допуск	0.606105 mm	

Качество сетки	Высокая	Инфо
		рмац

ия о сетке

Результаты исследования

Имя	Тип	Мин	Макс
Stress	VON: Напряжение Von Mises	9.54544e-007 N/mm^2 (МРа) Узел: 4617	0.00181807 N/mm^2 (МРа) Узел: 1036
Han and subjects of industry in the second sec		ил Мат. (Монч ⁴) Али 1113-08 1113-	
	Деталь1-SimulationXpress Study	-Напряжение-Stress	

Имя	Тип	Мин	Макс
Displacement	URES:	0 mm	3.48442e-007 mm
	Результирующееперемещение	Узел: 538	Узел: 898

Имя	Тип
Deformation	Деформированнаяформа
Here enganges and financianspares (here) (here (here) (her	
Дета.	ль1-SimulationXpress Study-Перемещение-Deformation

Имя	Тип	Мин	Макс
Factor of Safety	Максимальноенапряжение von	341254	6.49967e+008
	Mises	Узел: 1036	Узел: 4617

Міністерство освіти і науки України Донбаська державна машинобудівна академія

«Комп'ютерні дизайн та моделювання процесів і машин» методичні вказівки для всіх видів робіт з дисципліни «КОМП'ЮТЕРНЕ МОДЕЛЮВАННЯ І ПРОЕКТУВАННЯ ПРОЦЕСІВ І МАШИН» /Частина 4Simulation/

(Для студентів усіх форм навчання спеціальності 131 «Прикладна механіка» Спеціалізації: Комп'ютерне моделювання та проектування процесів і машин)